o D
Founder & Director
Rozy Computech Services

mailto:rozygag@yahoo.com
http://www.rozyph.com/

“What is PL/SQL ?

* Procedural Language — SQL

* An extension to SQL with design features of
programming languages (procedural and
object oriented)

*PL/SQL and Java are both supported as
internal host languages within Oracle
products.

The PL/SQL procedural language was developed
by Oracle Corporation in the late 198os as
procedural extension language for SQL and the
Oracle relational database. Following are notable

facts about PL/SQL:

* PL/SQL is a completely portable, high-
performance transaction-processing language.

« PL/SQL provides a built-in interpreted and OS
independent programming environment.

P R

 PL/SQL can also directly be called from the
command-line SQL*Plus interface.

e Direct call can also be made from external
programming language calls to database.

* PL/SQL's general syntax is based on that of
ADA and Pascal programming language.

« Apart from Oracle, PL/SQL is available in
TimesTen in-memory database and IBM DBoa.

| %hy PL/SQL ?

* Acts as host language for stored procedures
and triggers.

* Provides the ability to add middle tier
business logic to client/server applications.

* Provides Portability of code from one
environment to another

°* Improves performance of multi-query
transactions.

* Provides error handling

,gures of PL/SQL g

PL/SQL has the following features:

* PL/SQL is tightly integrated with SQL.

* It offers extensive error checking.

* It offers numerous data types.

* [t offers a variety of programming structures.

* [t supports structured programming through
functions and procedures.

* [t supports object oriented programming.

It supports developing web applications and
server pages.

,Eantages of PL/S -

PL/SQL has the following advantages :

* SQL is the standard database language and
PL/SQL is strongly integrated with SQL.
PL/SQL supports both static and dynamic
SQL.

» Static SQL supports DML operations and
transaction control from PL/SQL block.

* Dynamic SQL is SQL allows embedding
DDL statements in PL/SQL blocks.

"¢ PL/SQL allows sending an entire block of
statements to the database at one time. This
reduces network traffic and provides high
performance for the applications.

» PL/SQL give high productivity to programmers
as it can query, transform, and update data in a
database.

* PL/SQL saves time on design and debugging
by strong features, such as exception handling,
encapsulation, data hiding, and object-
oriented.

P R

* Applications written in PL/SQL are fully
portable.

* PL/SQL provides high security level.

 PL/SQL provides access to predefined SQL
packages.

» PL/SQL provides support for Object-Oriented
Programming.

» PL/SQL provides support for Developing Web
Applications and Server Pages.

,Ent-Server Architecture

 PL/SQL is a part of the Oracle RDBMS, and it
can reside in two environments, the client
and the server.

* Many Oracle applications are built using
client-server architecture.

e The Oracle database resides on the server.

* The program(’ C, Java, or PL/SQL) that
makes requests against this database resides
on the client machine.

As a result, it is very easy to move PL/SQL
modules between server-side and client-
side applications.

When the PL/SQL engine is located on
the server, the whole PL/SQL block is
passed to the PL/SQL engine on the
Oracle server. The PL/SQL engine
processes the block according to the
Figure 1.

!lgure 1: The PL/SQL Engine and Oracle Server

‘ FLE=E0 Bk '

PLESAL ared =00
SEEMENIS

Cracle =01 SEEment Procassor
=arwar

P R

* When the PL/SQL engine is located on the
client, as it is in the Oracle Developer
Tools, the PL/SQL processing is done on
the client side.

- All SQL statements that are embedded
within the PL/SQL block are sent to the
Oracle server for further processing.
When PL/SQL block contains no SQL
statement, the entire block is executed on
the client side.

r%arison of PL/SQL an$

- When a SQL statement is issued on the client
computer, the request is made to the database on the
server, and the result set is sent back to the client.

- As a result, a single SQL statement causes two trips on
the network. If multiple SELECT statements are
issued, the network traffic increase significantly very
fast. For example, four SELECT statements cause eight
network trips.

- If these statements are part of the PL/SQL block, they
are sent to the server as a single unit. Ihe SOL
statements in this PL/SQL program are executed at the
server and the result set is sent back as a single unit.
There is still only one network trip made as is in case of
a single SELECT statement.

Statamanis and
Thar Aasuk Sais Their Fesult Sats

aErar Wiyl Yy

=ida 201 Statamant
Processar

Figure 2.2 m PL/SQL in client-server architecture.

L Block-Structure

PL/SQL is a block-structured language,
meaning that PL/SQL programs are divided
and written in logical blocks of code. Each
block consists of three sub-parts:

1 Declarations :

This section starts with the keyword
DECLARE. It is an optional section and
defines all variables, cursors, subprograms,
and other elements to be used in the
program.

P

> Executable Commands

This section is enclosed between the
keywords BEGIN and END and it is a
mandatory section. It consists of the
executable PL/SQL statements of the
program. It should have at least one
executable line of code, which may be just a
NULL command to indicate that nothing
should be executed.

| mmm—

- 3 Exception Handling

This section starts with the keyword
EXCEPTION. This section is again optional
and contains exception(s) that handle errors
in the program.

Every PL/SQL statement end with a semicolon
(5).

PL/SQL blocks can be nested within other
PL/SQL blocks using BEGIN and END.

!;SQL Block Structure

DECLARE (optional)

- variable declarations
BEGIN (mandatory)

- SQL statements

- PL/SQL statements or sub-blocks
EXCEPTION (optional)

- actions to perform when errors occur
END; (mandatory)

SQL Block Types

Anonymous

DECLARE
BEGIN

-statements
EXCEPTION
END;

Procedure

PROCEDURE <name>
IS
BEGIN

-statements
EXCEPTION
END;

Function

FUNCTION <name>
RETURN <datatype>
IS
BEGIN

-statements
EXCEPTION
END;

!”m! | Th d

e end; line

DECLARE signals the end of
message varchar2(20):= 'Hello, World!'; the PL /SQL block
BEGIN :

dbms_output.put_line(message); To run the code

END; from SQL

/ command line, you

may need to type /

Hello, World ! at the beginning of

PL/SQL procedure successfully the first blank line

completed. ,
after the last line of

the code.

"he PL/SQL Identifier

PL/SQL identifiers are constants, variables,
exceptions, procedures, cursors, and reserved
words. The identifiers consist of a letter
optionally followed by more, letters numerals,
dollar signs, underscores, and number signs
and should not exceed 30 characters.

By default, identifiers are not case-
sensitive. So you can use integer or
INTEGER to represent a numeric value. You
cannot use a reserved keyword as an
identifier.

/SQL Delimi

A delimiter is a symbol with a special meaning.
Following is the list of delimiters in PL/SQL:

Delimiter Description
* Addition, subtraction/negation,
+,-, %,/ T L
>) multiplication, division

00 Attribute indicator

' Character string delimiter
Component selector

(,) Expression or list delimiter

Host variable indicator

, [tem separator

Similarly, there are more delimiters

L/sQL Com

°* Program comments are explanatory
statements that you can include in the
PL/SQL code that you write and helps anyone
reading it's source code. All programming
languages allow for some form of comments.

* The PL/SQL supports single line and multi-
line comments. All characters available inside
any comment are ignored by PL/SQL compiler.
The PL/SQL single-line comments start with
the delimiter -- (double hyphen) and multi-
line comments are enclosed by /* and */.

BB rple

DECLARE

-- variable declaration

message varchar2(20):= 'Hello, World!;
BEGIN

/%
PL/SQL executable statement(s)
.

dbms_output.put_line(message);

END;

/

» After Execution in SQL the result is : Hello, World!

* PL/SQL procedure successfully completed.

PL/SQL variables, constants and parameters must
have a valid data types which specifies a storage
format, constraints, and valid range of values.
PL/SQL is strongly typed. The following is the list of
data types:

Category

Scalar

Large Object (LOB)

Composite

Reference

Description

Single values with no internal
components, such asa NUMBER, DATE,
or BOOLEAN.

Pointers to large objects that are stored
separately from other data items, such as
text, graphic images, video clips, and
sound waveforms.

Data items that have internal components
that can be accessed individually. For
example, collections and records.

Pointers to other data items.

ar Data Types

PL/SQL Scalar Data Types and Subtypes come under
the following categories:

Date Type

Numeric
Character

Boolean

Datetime

Description

Numeric values, on which arithmetic operations
are performed.

Alphanumeric values that represent single
characters or strings of characters.

Logical values, on which logical operations are
performed.

Dates and times.

"PL/SQL Numeric Data Types

Data Type

FLOAT

INTEGER OR INT

REAL

PLS_INTEGER OR BINARY_INTEGER

DEC(prec, scale)

Description

ANSI and IBM specific floating-point type
with maximum precision of 126 binary
digits (approximately 38 decimal digits)

ANSI and IBM specific integer type with
maximum precision of 38 decimal digits

Floating-point type with maximum
precision of 63 binary digits (approximately
18 decimal digits)

Signed integer in range -2,147,483,648
through 2,147,483,647, represented in 32
bits

ANSI specific fixed-point type with
maximum precision of 38 decimal digits.

Following isz
DECLARE
numi INTEGER;
num2 REAL;
num3 DOUBLE PRECISION;
BEGIN
null;
END:;

/
When the above code Is compiled and executed, It

produces following result:
PL/SQL procedure successfully completed

"Character Data Types

Data Type

CHAR

VARCHAR2

RAW

LONG

ROWID

Description

Fixed-length character string with maximum size of 32,767

bytes

Variable-length character string with maximum size of
32,767 bytes

Variable-length binary or byte string with maximum size of
32,767 bytes, not interpreted by PL/SQL

Variable-length character string with maximum size of
32,760 bytes

Physical row identifier, the address of a row in an ordinary
table

%C-EL Operators§

An operator is a symbol that tells the compiler
to perform specific mathematical or logical
manipulations. PL/SQL language is rich in

built-in operators and provides following type
of operators:

* Arithmetic operators
*» Relational operators

* Comparison operators
* Logical operators

* String operators

%e%ence?Opera‘for? !

Operator Operation

o exponentiation

+, - identity, negation

5/ multiplication, division

. addition, subtraction,
’y

concat
=, <, >, <=, >=, ISNULL, LIKE, IN Comparison
NOT logical negation
AND conjunction

OR inclusion

* Programming languages provide various
control structures that allow for more
complicated execution paths.

* Decision making structures require that the
programmer specify one or more conditions to
be evaluated or tested by the program, along
with a statement or statements to be executed
if the condition is determined to be true, and
optionally, other statements to be executed if
the condition is determined to be false.

f!;SQL Decisions Making

PL/SQL language provides following types of
decision making statements.

* JF-THEN Statement

o [F-THEN-ELSE Statement

° [F-THEN-ELSEIF Statement
* Nested IF Statement

or

IF condition THEN
S;
END IF;

Where condition is a Boolean or relational

condition and S is a simple or compound
statement.

Example of an [F-THEN statement is:
IF (a <= 20) THEN
€ C 1
END IF;

!number(z) = 10; = |

BEGIN
a:= 10;
[F(a<20) THEN
dbms_output.put_line('a is less than 20');
END IF;

dbms_output.put_line('value of ais:' || a);

END;

,/After Execution :
a 1S less than 20 value of ais : 10
PL/SQL procedure successfully completed.

%E - Loops g

PL/SQL provides the following types of loop
to handle the looping requirements

e BASIC LOOP

« WHILE LOOP
« FOR LOOP

« NESTED LOOP

! yntax of Basic Loop

The syntax of a basic loop in PL/SQL
language is:
LOOP
Sequence of statements;

END LOOP

!ECLARE '

x number := 10;

BEGIN LOOP
dbms_output.put_line(x);

X :=X + 10;

IF x > 50 THEN exit; END IF;

END LOOP;
dbms_output.put_line('After Exit x is: ' || x);
END;

/

After Execution is : 10 20 30 40 50 After Exit x is: 60

For L

" FOR counter IN i value .. f value LOOP
sequence_of_ statements;
END LOOP;

Following are special characteristics of FOR loop:

The 1 value and f value of the loop variable or counter can
be literals, variables, or expressions but must evaluate to
numbers. Otherwise, PL/SQL raises the predefined
exception VALUE_ERROR.

The 1 _value need not to be 1; however, the loop counter
Increment (or decrement) must be 1.

PL/SQL allows determine the loop range dynamically at run
time.

Porce —mm—

DECLARE

a number(2);

BEGIN

FORain 1o ..15 LOOP
dbms_output.put_line('value of a:'

| a);

Result is
value of a: 10
value of a: 11

value of a: 12

END LOOQOP; _
END: Va:.ue of a: 13
/ value of a: 14

value of a: 15

mon PL/SQL

* CHR(ASClIlIvalue)

» ASCII(string)

* LOWER(string)

» SUBSTR(string,start,substrlength)

* LTRIM(string)

» RTRIM(string)

» REPLACE(string, searchstring, replacestring)
» UPPER(string)

* INITCAP(string)

* LENGTH(string)

P

Common PL/SQL Numeﬁc Functions
* ABS(value)

* ROUND(value, precision)
* MOD(value,divisor)

* SQRT (value)

* TRUNC(value, |precision|)
» LEAST (exp1, exp2...)

* GREATEST (exp1, exp2...

|%hen is PL/SQL handy

* When something is too complicated for SQL

* When conditional branching and looping are
needed.

mailto:rozygag@yahoo.com
http://www.rozyph.com/

	Slide Number 1
	What is PL/SQL ?
	Slide Number 3
	Slide Number 4
	Why PL/SQL ?
	Features of PL/SQL
	Advantages of PL/SQL
	Slide Number 8
	Slide Number 9
	Client-Server Architecture
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Comparison of PL/SQL and SQL
	Slide Number 15
	PL/SQL Block-Structure
	Slide Number 17
	Slide Number 18
	PL/SQL Block Structure
	PL/SQL Block Types
	Example
	The PL/SQL Identifiers
	The PL/SQL Delimiters
	The PL/SQL Comments
	Slide Number 25
	Data Types
	Scalar Data Types
	PL/SQL Numeric Data Types
	Slide Number 29
	Character Data Types
	PL/SQL Operators
	Precedence of Operators
	Control Structures
	Slide Number 34
	Syntax for IF-THEN statement
	Example
	PL/SQL - Loops
	Syntax of Basic Loop
	Example
	Syntax of For Loop
	Example
	Common PL/SQL String Functions
	Common PL/SQL Numeric Functions
	When is PL/SQL handy
	Thanks !

