
Gagan
rozyph2017@gmail.com

www.rozyph.com
YouTube : https://youtu.be/fgPjzxH_jyA

Book : Fundamentals of Computer Vol. I by Gagan Deep

mailto:rozyph2017@yahoo.com
http://www.rozyph.com/
https://youtu.be/fgPjzxH_jyA

INTRODUCTION
A natural language is a medium of
communication between human being.
The natural languages such as Hindi,
Punjabi, English, etc. is used to
communicate with each other our ideas
and emotions. Similarly, a computer
language is a means of communication
used to communicate between people
and the computer.

Means, with the help of a computer
language, a programmer tells a
computer what he wants it to do.
All natural languages use a standard set
of symbols for the purpose of
communication.
These symbols are understood by
everyone using that language. We
normally call this set of symbols the
vocabulary of that particular language.

For example, the words we use in English
are the symbols of English language that
make up its vocabulary. Each word has
definite meaning which can be looked up
in a dictionary.
In a similar manner, all computer
languages have a vocabulary of their own.
Each symbol of the vocabulary has
definite unambiguous meaning which can
be looked up in the manual meant for that
language.

WHY PROGRAMMING LANGUAGES?
Computer programming languages are developed with
the priority objective of facilitating a large number of
people to use computers without the need to know in
detail the internal structure of the computer.
Languages are matched to the type of operations to be
performed in algorithms for various applications.
Languages are also designed to be machine‐independent.
In other words, the structure of a programming language
would not depend upon the internal structure of a
specified computer.
Ideally, one should be able to execute a program on any
computer regardless of who manufactured it or what
model it is.

Programming languages have improved throughout
the years, just as computer hardware has improved.
They have progressed from machine‐oriented
languages that use strings of binary 1s and 0s to
problem‐oriented languages that use common
mathematical and/or English terms.
However, the development of programming language
can be distinctly divided into four generation :

1st Generation Language :Machine Languages (1940‐50)
2nd Generation Language : Assembly Language (1950‐58)
3rd Generation Language : High Level Languages (1958‐85)
4th Generation Language : 4‐GLs (1985 onwards)

GENERATIONS OF PL

MACHINE LANGUAGE (1ST GENERATION)
A computer system is programmed to understand
many computer languages but only language is
understood by computer without using any type of
translation, is called the machine language or the
machine code of the computer.
So, we can say that the Machine Language is the
language directly understood by a computer.
In other words, the binary language (the language of
0’s and 1’s) is the machine language is normally
written as strings of binary 1s and 0s.
The circuitry of a computer is also designed to
recognize the machine language immediately.

Any information or instruction in this language is to
be represented in terms of 0s and 1s, the symbol 0
standing for the absence of an electric pulse and 1 for
the presence of an electric pulse.
As a computer is able to recognise the presence or
absence of an electric pulse, it is able to understand
the machine language.
For example, a sequence of 0s and 1s such as 01110001
has a specific meaning for a computer, although it
may appear as an ordinary binary number to us.
So, the writing of programs in machine language is
very complicated and difficult task. Only experts can
use this language.

In Machine language, instruction format is divided
into two parts.
The first part is operation code which tell the
computer to perform such a function. This is also
called ‘opcode’.
Second part of the instruction is the operand which
tell the computer about the location of data or
another instruction on which the operation will be
performed. This is also Called ‘operand’

OPCode

• Operation
Code

OPERAnd

• Operation
Address

Machine language consists of strings of binary
numbers and is the only one which directly
understands by the CPU. For example, a program
instruction is as under which consists of binary
numbers (1s and 0s) :

10110011111101001110110
The program to add two numbers in memory and
print the result might look like the following :

001000000000001100111001
001100000000010000100001
011000000000011100101110
101000111111011100101110
000000000000000000000000

Advantage :
Programs written in machine language
can be executed very fast by the
computer. This is mainly because
machine instructions are directly
understood by the CPU and no
translation of the program is required.
Small in size
All programs a combination of 1 and 0

Disadvantages :
Machine dependent
Difficult to program
Error prone
Difficult to modify

ASSEMBLY LANGUAGE (2ND GENERATION)
Some of the difficulties arising in use of
machine language could be overcome by
use of Assembly Language for writing of
programs.
Step in improving the program
preparation process was to substitute
letter symbols mnemonics for numeric
operation codes of machine language.

A mnemonic is any kind of mental trick we
use to help us remember.
Mnemonics comes in various shapes and
sizes.
For example, a computer is designed to
interpret machine code of 1111 (binary) or 15
(decimal) as operation ‘subtract’ but it is
easier for a human being to remember it as
SUB.

Then we can write program for the computer using
symbols instead of numbers, and have the computer
do its own translating.
This makes it easier for the programmer, because he
can use letters, symbols, and mnemonic instead of
numbers for writing his programs.
Example of a program adding two numbers and printing the
result :

CLA A
ADD B
STA C
TYP C
HLT

Which could mean take “A” , add “B”, store
the result in “C” and type “C” and halt. The
computer translate each line of this program
into corresponding machine language code.
Translator who translate Assembly Language
Program to Machine Language is known as
Assembler.

AssemblerAssembly
Language
Program
(Source Code)

Machine
Language
Program
(Object Code)

Input Output

One to One
Correspondence

Advantages of Assembly Language
(Over Machine Language) :
Easier to understand and use
Easy to modify a program
Easy to error correction
Easy to relocate the address
Easy about addresses
Efficiency of machine language

Limitation of Assembly Language
Machine Dependent
Knowledge of hardware required
Machine level coding

HIGH‐LEVEL LANGUAGE (3RD GENERATION)
Writing of programs in machine language or assembly
language requires a deep knowledge of the internal
structure of the computer.
While writing programs in any of these languages, a
programmer has to remember all the operation codes
(numeric or mnemonic) of the computer and know in
detail what each code does and how it affect the various
registers of the computer.
But, writing a good program, a program should mainly
concentrate on the logic of the problem rather than be
concerned with the details of the internal structure of the
computer. In order to facilitate the programmers to use
computers without the need to know in detail the internal
structure of the computer, high‐level languages were
developed.

HIGH‐LEVEL LANGUAGE (3RD GENERATION)
High‐level languages, instead of being machine based, are
oriented more towards the problem to be solved. These
languages enable the programmer to write instructions
using English words and familiar mathematical symbols.
It becomes easier for him to concentrate on the logic of his
problem rather than getting involved in programming
details. For example, let use consider the problem of
adding two numbers (A and B) and store the sum in SUM.
Using a high‐level language, say FORTRAN or instance, to
instruct the computer to do this job, only one instruction
need be written :

SUM = A+B
The instruction is obviously very easy to understand and
write because it resembles the familiar algebraic notation
for adding to number : a=b+c.

HIGH‐LEVEL LANGUAGE (3RD GENERATION)
High‐level languages are basically symbolic
languages that use English words and/or
mathematical symbols rather than mnemonic
codes.
Every instruction which the programmer writes in
high‐level language is translated into many
machine language instructions.
This is one to many machine translation and not
one‐to‐one as in the case of assembly language.
The Translator who translate these HLL
instructions to MLL instructions is known as
Compiler.

HIGH‐LEVEL LANGUAGE (3RD GENERATION)
High‐level languages are basically symbolic
languages that use English words and/or
mathematical symbols rather than mnemonic
codes.
Every instruction which the programmer writes in
high‐level language is translated into many
machine language instructions.
This is one to many machine translation and not
one‐to‐one as in the case of assembly language.
The Translator who translate these HLL
instructions to MLL instructions is known as
Compiler.

COMPILER

CompilerHigh Level
Language
Program
(Source Code)

Machine
Language
Program
(Object Code)

Input Output

One to Many
Correspondence

HIGH‐LEVEL LANGUAGE (3RD GENERATION)
High Level languages may be divided into
three categories :
Procedure Oriented Language
Problem Oriented Language
Interactive Programming Language

High Level Languages are sometimes
classified as
General Purpose Language
Special Purpose Language

Characteristics of a Good PL
Simplicity
Efficiency
Environment suitable
Compactness
Locality
Naturalness
Structured
Extensibility

FOURTH GENERATION LANGUAGES (4GLs)
The Fourth Generation languages also called 4GLs are the
highly users friendly languages, which means these
languages are easy to under‐ stand and to write programs
with, for the users.
The advancement in computer hardware made the
computers simpler machines and it became easier to
handle these machines.
Advancement of computer‐hardware necessitated the
need of development of better computer languages so
that advanced feature of computers could, be fully
utilised.
The efforts to develop better computer language resulted
in development of Fourth Generation languages.

FOURTH GENERATION LANGUAGES (4GLs)
The fourth generation languages are non‐
procedural languages and hence are highly users
friendly.
In fact the non‐procedural nature of these
languages is the reason of their popularity.
For easy use, most of the 4GLs are menu driven
languages and provide interactive menus.
The major advantages of these languages are
that even a novice in the field of computers can
solve fairly complicated problems.

Major characteristics of 4 GLs
The major characteristics of fourth generation
languages are :
Precise‐nature.
Non‐procedural..
Structure‐independent.

Components of a 4GL
A data dictionary..
A query language that interrogates a database or
data bank.
A report generator, which automatically
executes a program to produce a printed report.
A data base management system.
Statistical analysis tools
Financial analysis toolsDecision support tools.
A Graphic manipulator
A screen generator.

Components of a 4GL
A menu.
A dialogue generator.
A word processor.
A spreadsheet.
Communication interfaces.

All these components available as separate
packages are integrated in a typical 4 GL.

Some popular 4 GLs
Focus
Mapper
Ramis II
Nomad 2
Use. It
Linc
Database query language e.g.SQL
Metafont
PostScript
Mathematica

Thanks!

For any question …
…Leave Comment!

	Computer Languages
	INTRODUCTION
	Slide Number 3
	Slide Number 4
	Why Programming Languages?
	Slide Number 6
	Machine Language (1st Generation)
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Assembly Language (2nd Generation)
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	High-Level Language (3rd Generation)
	High-Level Language (3rd Generation)
	High-Level Language (3rd Generation)
	High-Level Language (3rd Generation)
	Compiler
	High-Level Language (3rd Generation)
	Characteristics of a Good PL
	FOURTH GENERATION LANGUAGES (4GLs)
	FOURTH GENERATION LANGUAGES (4GLs)
	Major characteristics of 4 GLs
	Components of a 4GL
	Components of a 4GL
	Some popular 4 GLs
	Slide Number 32

