
Programming With C
Fundamentals of ‘C’ including
data types, operators and I/O
statements

Gagan Deep
Founder & Director
Rozy Computech Services, Kurukshetra

Email – rozygag@yahoo.com
www.rozyph.com

mailto:rozygag@yahoo.com
http://www.rozyph.com/

Contents of Discussion

• Language & Programming Language
• About C
• Character Set, Identifiers & Statements
• Data Types
• Operators
• Input Output Functions
• Basic Programming Examples

Language

• Language is a way of Communication Between
Two like Hindi, English, Punjabi, Marathi,
Tamil etc.

• If we want to communicate other then our own
languages then we can communicate in either of
two ways

- Either Learn
- Use Translator

Programming Language

• Way of Communication between Human and
Computer like Machine language, Assembly
Language, High Level Language.

• Machine Language and Assembly Languages are
low level languages because these don’t work like
our own languages.

• High level languages(HLL) works like our own
languages like Hindi, English and others that’s
why these are known as HLL.

About C

• C is a Programming Language
• C Language is a High Level Language (because it

works like natural language). Here we uses
English like statements.

• C Language also have a properties of low level
languages

• That’s why some of us says – This is Middle
Level Language.

About C

• C is a general purpose programming language.
• C was originally designed for and implemented

on the UNIX operating system on the DEC PDP-
11, by Dennis Ritchie.

• C is a case sensitive language A≠ a

Character Set / Alphabets

• First Thing we learned in any language is
Alphabets – Similarly in Programming Languages
is Character Set.

• C character Set includes alphabets like a-z, A-Z,
Digits like 0-9, special symbols like !, @, #, $, %,
…….-, + etc., and some other characters which
are not available on keyboard <=, >=, !=, == etc.

• Print Characters- which are known as Escape
sequences like ‘\n’, ‘\t’, ‘\b’ etc…

Words

• Second thing we always learn in any language are
words. Similarly we learn here in C. Here we say
words as Identifiers and Reserve words.

• Identifier Gagan, Rajesh, Saminder, Meenu, etc.
are our names which identifies us, and some other
names are like Table, chair, Fan, Tube which we
always we are using for some objects.

• First Type of Identifiers are known as Variable in
any Language or we can say in C and second type of
names are known as Constants.

• Some other words are known as Standard words
like min, max etc.

Rules for Naming Identifiers

• First Character is Letter not digit
• Second character it may be letter or digit
• Special characters (other then letters or digits)

are not allowed Except underscore(_)
• Length of Identifiers 8, 31 etc. – depends upon

compiler

Type of Identifiers – Data Type

• Like we have our Gender -Male / Female. Similarly in
each language we have some types of identifier
known as Data types.

• What data type does is categorize data.
• These basic categorizations or data types are

integer(int),
• Real(float),
• Character (char)

• char – 1 byte - -128 to 127
• Character can declare as

char c;
• int – 2 bytes - Range (-32768 to 32767)
• Integer can declare as

int a;
• float – 4 bytes - 3.4X10-38 to 3.4X1038

• Real can declare as
float f;

Why int’s range is -32768 to 32767 ?

Integer Representation
• Most of the computers use 2 bytes to store an

integer.
• The left most bit, out of sixteen bits, is used to

indicate the sign of the integer and is called Sign
bit.

• The other 15 bits are used to store the given
integer, a 0 in the sign bit position indicates a
positive integer and 1 in this position means the
integer stored is negative.

Integer Representation
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0/1

Sign
Bit

15 bits for Number representation
Maximum Number

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

+215-1 = 32767
Minimum Number

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-215 = -32768
Unsigned Numbers are numbers without sign i.e. First bit is used for number itself.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Range is 0 to 216 -1 i.e. 0 to 65535

If we want bigger number then the
ranges defined.

• char – strings
String is collection of character

• int – short, long, unsigned, unsigned long
Short is of 1 byte/ 2 bytes(depends upon

compilers)
Long is of 4 bytes(double precession(size))

• float - double
Double is of 8 Bytes

Constants

• int – Decimal, Octal, Hexadecimal
• Decimal int – 77 equals 77
• Octal int – 077 equals 63
• Hexadecimal int – 0x77 equals 119
• Unsigned int – 45678U
• Unsigned long – 243567849UL
• Float – 25.67 or 25.67 x 103

• Char - ‘a’
• String – “Rozy”
• E.g.
• const int a=77;

Symbolic Constants
• Symbolic constant is a name that substitute for a

sequence of characters.
• The character may represent a numeric constant, a

character constant or a string constant.
• When a program is compiled, each occurrence of a

symbolic constant is replaced by its corresponding
character sequence.

• E.g.
#define X 5
#define PI 3.1417

• Symbolic constant does not end with semicolon.

Sentences / Statements
• Third thing we learn in any language are sentences,

here in programming these are known as statements.
• Statements are the instructions given to the

computer to perform any kind of action.
• Statements form the smallest executable unit within

a C++ program.
• As sentences terminated by some full stop(., I),

similarly, Statements are terminated with a
semicolon (;).

Types of Statements
• Simple Statements
• Compound Statements
• Control Statements
Simple Statement – Single statement. The
simplest statement is the empty or null statement.
e.g.
; // it is a null statement.

Examples of simple statement are as
x=y; x=x+y;
scanf(“%d”, &ajay);
printf(“%d”, ajay);

• Compound Statement – paragraph (Block) A
compound statement in C++ is a sequence of
statements enclosed by a pair of braces ({}). e.g.,

{ statement 1;
statement 2; },

A compound statement is treated as a single unit or
statement.
• Control Statements – which controls flow of

statements like decision/ branching and loops

Comments
• How we can understand any thing easily.
• The answer is – if that is explained properly or

written in a explained manner.
• Comments are used to provide our program a good

readability. Comment helps user to read and
understand the programs easily. Comments are
only for users not for the compilers.

• We can put one line comment or many line
comments

• For one line - // Any thing written after this will not
executed by compiler

• For many line - /* Number of lines of comment */

Operators
• Operators are tokens that trigger some computation

when applied to variable and other objects in an
expression. Classifications of Operators are

Depending upon the number of operands we have :
• Unary operators : These operators require just 1

operand. e.g, - (minus sign), ++, --, sizeof , casting.
• Binary operators: These operators take 2

operands. e.g. +, -, *, / , <, >, !=, <=
• Ternary operators: These operators take 3 operands,

e.g. Conditional operator (? :) e.g. (A >B?5:6)

Operators by Operations
• Arithmetic Operators : Integer and Real

Integer : +,-, *, /, %
Real : +, -, *, /

• Relational Operators : <, >, <=, >=,
• Equality Operators : !=, ==
• Logical Operators : && (AND), ||(OR), !(NOT)
• Assignment Arithmetic Operators : +=, *=, /= etc.

e.g. a+=5 is equivalent to a=a+5. These are also
known as Compound Assignment or
Shorthand's

Operators by Operations

• Increment Operator

• Decrement Operators : Similarly pre and post
decrement operators e.g. - -a; and a- -;

Pre increment : ++a
++a means a = a +1

Pre means before execution of
statement e.g. If a=5;

Post increment : a++
a++ means a = a +1

Post means after execution of
statement e.g. If a=5;

printf(“%d”, a); //returns 5
printf(“%d”, ++a); //returns 6
printf(“%d”, a); //returns 6

printf(“%d”, a); //returns 5
printf(“%d”, a++); //returns 5
printf(“%d”, a); //returns 6

Hierarchy / Precedence of
Operators with their Associativity

Operators Category Operators Associativity

Unary Operators -, ++, - - , !, sizeof , (type) Right → Left (R→L)

Arithmetic * , / , %, Left → Right (L → R)

+ , -

Relational < , <=, >, >= L → R

Equality == , != L → R

Logical && L → R

|| L → R

Assignment =, +=, -=, *=, /=, %= R → L

Low-Level Programming – Bit Wise Operator

• The One’s (1’s) complement operator (~)
• Another Unary Operator
• Causes the bits of its operator to ve inverted

(reversed) so that 1s become 0s and vice
versa.

• This operator always precedes its operand.
• e.g. int a=12;//12 binary equivalent is 1100

~a //gives result as 0011
• Generally , the operand will be an unsigned

octal or an unsigned hexadecimal quantity,
though this is not a firm requirement.

The Logical Bitwise Operator
• The Bitwise and expression (&)

When both are true then true otherwise false
means returns 1 only if both are 1 otherwise 0.

• The bitwise or expression (|)
When both are false then false otherwise true
means returns 0 if both are 0 otherwise 1

• The bitwise exclusive or expression (^)
If both are complement to each other then true
otherwise false means when one is 1 and other is
0 then returns 1 otherwise 0

Table for Logical Bitwise operators

a b a&b a|b a^b
1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

Examples of Bitwise operators
int a = 12, b=13

Binary equivalents are
a=1100
b=1101

& | ^

1100
&1101

Result is
1100

1100
|1101

Result is
1101

1100
^1101

Result is
0001

Bitwise Shift Operators
• Shift Left (<<) & Shift Right(>>)
• Each operator requires two operands. The first is an

integer type operand that represents the bit pattern
to be shifted. The second is an unsigned integer
that indicates the number of displacements.

• int a=15; //binary representation is 00001111
• b=2;
• a<<b; gives 00111100 the result is 60 means

a * 2b

• a>>b; gives 00000011 the result is 3 means
a / 2b

Data Input and Output
• Input/Output – may be interactive or non interactive.
• In C you can input/output using input and output

library function.
• Functions – User Defined and Library Function
• These I/O Library functions are getchar(), putchar(),

scanf(), printf(), gets() and puts().
• These six functions permits the transfer of information

between the computer and the standard I/O
devices(e.g. Keyboard, VDU etc.)

• An I/O fxs. Can be accessed from anywhere within the
program simply by writing the function name.

I/O Statements
• First we discuss about Single Character and

Strings I/O Functions

Single Character I/O
Functions are getchar()

and putchar ()

String I/O Functions are
gets() and puts()

char c;
Input statement like this
c = getchar();

Output statement like this
putchar(c);

char name[20];
Input statement like this
gets(name);

Output statement like this
puts(name);

scanf()
• With the help of scanf() we can enter any type of

data and mixed data. In general terms scanf()
function is written as
scanf(control string, arg1, arg2, arg3…, argn);

• Control String consists of individual groups of
characters, with one character group for each
input data item.

• Each character group must begin with a
percent(%) sign and followed by conversion
character which indicates the type of
corresponding data item.

Commonly used conversion characters for data
input are

• c for single character,
• d is for decimal integer,
• e for floating point value,
• f for floating point value,
• l is for long etc….

• The arguments are written as variables, arrays,
whose types match the corresponding character
group in the control string.

• Each variable must be preceded by an ampersand
(&).

• String name should not begin with &.

Examples
char name[20];
int roll; float marks;

scanf(“ %s %d %f”, name, &roll, &marks);

• Formatted scanf() function
int a,b,c;

scanf(“%3d, %3d %3d”, &a, &b, &c);

In the above statement all a,b and c can take
maximum of 3 digits.

printf()
• It is similar to input function scanf(), except that

its purpose is to display data rather than to enter
it into the computer.

• Also there is no ampersand (&) symbol before
args.

printf(“ %s \n %d \n %f”, name, roll, marks);

Formatted printf() function

• example
int a,b,c;
printf(“%3d, %3d %3d”, a, b, c);

• In the above statement all a,b and c can display
minimum of 3 digits or spaces instead of digits.

If you have any queries you
can contact me at :

rozygag@yahoo.com

	��Programming With C�Fundamentals of ‘C’ including data types, operators and I/O statements
	Contents of Discussion
	Language
	Programming Language
	About C
	About C
	Character Set / Alphabets
	Words
	Rules for Naming Identifiers
	Type of Identifiers – Data Type
	Slide Number 11
	Why int’s range is -32768 to 32767 ?
	Integer Representation
	If we want bigger number then the ranges defined.
	Constants
	Symbolic Constants
	Sentences / Statements
	Types of Statements
	Slide Number 19
	Comments
	Operators
	Operators by Operations
	Operators by Operations
	Hierarchy / Precedence of Operators with their Associativity
	Low-Level Programming – Bit Wise Operator
	The Logical Bitwise Operator
	Table for Logical Bitwise operators
	Examples of Bitwise operators
	Bitwise Shift Operators
	Data Input and Output
	I/O Statements
	scanf()
	Slide Number 33
	Examples
	printf()
	Formatted printf() function
	Slide Number 37

